
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Woods Hole Oceanographic Institution

Technical Report

March 1995

WHOI-95-06

/TX

A Processing System for Argos Meteorological Data

by

Nancy R. Galbraith

^^

mim m
Upper Ocean Processes Group

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

UOP Technical Report 95-3

I
I
I
I
I
I
I
I
I

WHOI-95-06
UOP-95-03

A Processing System for Argos Meteorological Data

by

Nancy R. Galbraith

I
I
f
I
I
I
I
I
I
m Funding was provided by the Office of Naval Research through Grant No. N00014-94-1-0161.

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

March 1995

Technical Report

Reproduction in whole or in part is permitted for any purpose of the United States
Government. This report should be cited as Woods Hole Oceanog. Inst. Tech. Rept.,

WHOI-95-06.

Approved for public release; distribution unlimited.

Approved for Distribution:

^^^^^ ^y£^^..^.z^

Philip L. Richardson, Chair
Department of Physical Oceanography

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A Processing System for Argos
Meteorological Data

Nancy R. Galbraith
Upper Ocean Processes Group

Physical Oceanography Department
Woods Hole Oceanographic Institution

13 March 1995

Iffloaaslon For

H^JIS QRAkI
miC IAS

JH.stif:lcatioaL

n
n

r .
SMst '

I:
„.J

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Abstract
Upper Ocean Processes Group meteorological data is transmitted from
siurface buoys via Argos satellite and processed in an automatic mode on a
UNIX workstation. Data is extracted from input files based on instrument
type and experiment, processed as appropriate, and plotted, without user
intervention. While the processing system normedly runs automatically, it is
designed so that modules can also be run directly from a terminal when
necessary. The Argos processing system allows us to monitor the
meteorological data being collected in the field, and provides early
information about problems with sensors, instruments, or buoys, when they
occur. The automatic process allows more information to be viewed with
less effort, and increases the usefulness of the Argos data.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Contents

Abstract i

1 UNIX Implementation and Overview 1
1.1 Cron 2

2 Main Processing Script 3

3 Processing VAWR Data 4
3.1 Shell Script gaxgle.sh 5
3.2 Program Gargle 5
3.3 VAWR Table Files 6

4 Processing IMET Data 7
4.1 Shell Script Imet.sh 8
4.2 Program GargleJmet 9
4.3 IMET Table Files 9

5 Processing Engineering Variables 10

6 Processing Position Data 11

7 Data Transmission Scripts 12

8 Plotting Scripts 13
8.1 Plot Plus Time Series Plots 13
8.2 Matlab Position Plot . 14

9 Appendices 15
Appendix I. Startup Shell Scripts 15
Appendix II. VAWR Processing 19
Appendix III. IMET Processing 25
Appendix IV. Engineering PTT Processing 33
Appendix V. Position Processing Scripts 38
Appendix VI. Data Distribution Scripts 41
Appendix VII. Plotting Scripts and Sample Plots 43

u

Acknowledgements 54

111

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1 UNIX Implementation and Overview

Data transmitted from surface buoys via Argos satellite for the Upper
Ocean Processes (UOP) Group experiments are processed in an automatic
mode on a Sun workstation, Griffon, using a series of shell scripts and C
programs initiated by the UNIX cron utility. Files of data from all of the
UOP's active Argos transmitters are sent daily from Service Argos'
computers in Landover, Maryland, using ftp. The UNIX cron utility runs a
script every hour which checks for incoming data. When a new data file is
found, processing scripts are activated.

Each platform transmitter terminal, or PTT, in the field includes its own
identification number in the messages it sends to Service Argos. This
number allows Service Argos to route each message to the correct
destination, grouping the messages it receives for retransmission to the
PTT owner. Each PTT identification number is associated with an
experiment nimiber, which is used for routing and accounting purposes, and
so data for each experiment is bundled into a separate file. Currently, we
receive data from our Arabian Sea buoy in a file called argos.dat, and data
from our GLOBEC buoy in file argos2.dat.

Incoming data is processed by a suite of C programs and shell scripts.
While these programs and scripts are normally run automatically by the
UNIX scheduler, cron, they are designed so they can also be run directly
from a terminal in cases where Argos transmissions are interrupted, an
instnmient must be reprocessed, or non-standard plots are desired.

The primary goal of the Argos processing system is to monitor the
meteorological data being collected in the field, as soon as it becomes
available. The system also provides early information about problems with
sensors, instrxmients, or buoys, when they occur. By automating the entire
process, we allow more information to be viewed with less effort, and
increase the usefulness of the Argos data.

1.1 Cron

The UNIX cron utility is currently run by user nan on Griifon. Cron
executes commands at specific times. The commands are entered into a
table, called the cron table, by program crontab. The cron table entry on
Griffon can be edited by its owner by typing crontab -e. New cron table
entries can be started using crontab -e, or checked by typing crontab -1. The
cron table entry for the Arabian Sea and GLOBEC Argos processing is:

1 :(c i((* * /gdata/argos/argos.sh
18** 1-5 /puli/data/arab/argos/dopl.sh
18** 1-5 /puli/data/globec/argos/dopl.sh

The first entry runs the script axgos.sh at one minute past every hour,
every day. The second and third commands generate plots at 8 a.m. on
weekdays only, using plotting scripts for two experiments in their
processing directories.

The crontab entries axe basically names of shell script programs. To change
the processing system, the scripts themselves can be edited, without having
to alter the crontab entry. As experiments start and end, the appropriate
commands can be added to or deleted from the main processing scripts.

The directory /gdata/argos on Griffon contains all the shared processing
software and hais subdirectories for each active experiment. These
experiment subdirectories contain archives of Argos data and information
about the instrumentation. The processed data normally resides, along
with experiment-specific scripts, on another workstation, on a disk that is
mounted on Griffon using the Network File System (NFS).

If data must be retransmitted from Service Argos for any reason, axgos.sh
will automatically process any new data every hour. As long as Service
Argos does not send more than one file within that time period, cron will
cause axgos.sh to copy and process all incoming data files with the names

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

specified in the script. To process an incoming file immediately, the script
argos.sh can be invoked from the keyboard.

2 Main Processing Script

The main processing is initiated by the shell script argos.sh, in Griffon's
directory /gdata/argos. Incoming Argos data is written to that directory in
files named argos.dat and argos2.dat, which represent two different Argos
accounts. This script handles each input file separately, first processing all
data in axgos.dat.n, then axgos2.dat.n.

For each experiment, the script first checks for the existence of the
appropriate incoming data file. If the file exists, it is moved to a file named
argos(2).dat.n, where n is a monotonically increasing mmiber. Note that if
the file argos.dat. 1 does not exist, that filename is used for the new file. If
it does exist, the directory is checked by the shell script findlast.sh to
determine the next sequence number for the output filename, which is
nimierically one greater than the highest existing number. Therefore,
removing the file argos.dat.l will cause erratic nimibering, since the next
file processed will be called argos.dat.1, but incoming data files will never
be overwritten by the automated processing system.

Once the file archiving is done, the script processes data from the
Vector-Averaging Wind Recorder (VAWR), then data from the Improved
Meteorological (IMET) System, if it is being transmitted. If IMET data is
not transmitted, there is normally a tensiometer reporting, and its data is
processed after the VAWR data. Position data, generated by the Argos
system, is processed last. Processing each of these data sets requires a
separate pass through the incoming file, looking for the appropriate Argos
transmitter ids. Each of these tasks is handled by an independent shell
script, which can be run manually if needed.

See Appendix I for text of the shell scripts argos.sh and findlast.sh.

3 Processing VAWR Data

The script axgos.sh processes VAWR data using amother shell script,
gargle.sh, which in turn runs a C program to extract and scale the
incoming Argos data. Shell script /gdata/argos/gargle.sh starts one of the
gargle processing programs, which extract VAWR data from a specified
Argos input file based on information in a calibration file.

The VAWR data files produced by this system contain the variables
yearday, wind east, wind north, wind speed, wind direction, short wave
radiation, relative humidity, barometric pressure, sea temperature, air
temperature, long wave thermopile voltage, body temperature, dome
temperature, and long wave radiation. Air and sea temperatures are
recorded in degrees centigrade, while body and dome are Kelvin
temperatures. Wind vectors axe recorded in meters per second, radiation
values in watts per square meter, and thermopile voltage in microvolts.
Relative humidity is reported as a percentage, and baxometric pressure is
reported in millibars. A sample output file is contained in Appendix II.

This system uniformly uses the convention that yearday 1 begins at
midnight on January 1. This is consistent with the UNIX date utility,
which is used to check for invalid dates and to set date limits for plots.

Occasionally VAWR data will need to be reprocessed. This will usually
occur when corrections need to be made to a table file. If a VAWR's
interval counter resets, the date calculated by the software system will be
incorrect, and the data will need to be reprocessed after a table file change
has been made. To reprocess VAWR data in case of errors or resets, remove
any unwanted or incorrect data from the file
/gdata/argos/exper/vawrnnnn.arch, which is appended by the processing
system. Then cd to /gdata/argos and type

gargle.sh garglenew argos.dat.nn exper vawrnnnn »
/gdata/axgos/vawnmim.log 2>&1

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

where nn is the number of the ajgos.dat file to be reprocessed, exper is the
experiment name and nnnn is the 4-digit VAWR number. The experiment
name must correspond to two data directories, one in /pxili/data and one in
/gdata/argos. The first, /puli/data/exper, must have a subdirectory named
argos, and the second, /gdata/argos/exper, must contain a table file for the
VAWR to be processed.

Note that the working data file in the processing subdirectory on Puli is
overwritten daily by the automated processing system, so any changes
made there will be lost. To permanently alter the working data file, the
archive version of the file, in the /gdata/argos directory, must be modified.

3.1 Shell Script gargle.sh

Arguments to gargle.sh are the gargle program name, the input data file to
be processed, the experiment, and the VAWR name. Using these
argimients, gargle.sh generates filenames and commands to process the
incoming data.

Gargle.sh calls program gargle or garglenew with the filenames of the input
Argos file, the VAWR table file and the output VAWR data file. Then
gargle.sh sorts the new data and appends it to an archive file in the
experiment subdirectory on Griffon. The archive file is then sorted by date
with the UNIX sort utility, deleting duplicate entries. The sorted version of
the file is placed in the processing directory for the experiment on Puli, in a
file names vawrnnim.asc.

See Appendix II for text of gargle.sh.

3.2 Program Gargle

Program gargle extracts VAWR data from a specified Argos input file based
on information in a calibration file, also called a table file. The table file

contains the key to variable positions within the incoming records, allowing
data to be extracted, and contains calibration values to be used in scaling
the data. Program gargle writes data to a new file, and will overwrite an
existing file if one is specified as the output file.

Gargle was adapted by Roger Goldsmith, of WHOPs Computer and
Information Services (CIS) group.The original version, called gargoyle, was
written by Thomas Danforth to run under the SCO Zenix operating system
on a 386 PC, and was designed to work with a commercial database.
Program gargle, which runs under SunOS UNIX, uses portable ASCII data
files. The specifics of program gargle are beyond the scope of this manual.

There are at present two versions of the gargle program. Programs gargle
and garglenew are identical except for the handling of long wave radiation.
Both versions calculate long wave from independently scaled thermopile
voltage and body and dome temperatures, but garglenew uses a new
algorithm. Because the new type of calibration constants were not available
for the Arabian Sea VAWR, we retained the original code for the duration
of that experiment. The old version will be removed after the first Arabian
Sea mooring is recovered.

3.3 VAWR Table Files

Program gargle uses table files which have the same format as those used
by the tape processing programs vawr.cdf and vawr.cal, but with several
extensions needed to decode the Argos record. The table files control the
processing of the incoming record and provide documentation of
calibrations used. The use of table files provides some flexibility to the
system, accommodating changes in the incoming record.

Gargle extracts the PTT nimibers from the specified table file, and uses
those munbers to decide which records to extract from the incoming Argos
file. It also uses the position of a variable description in the table file and
the length in bits specified to determine the position and length of the
variable within the Argos record. The calibration values are used by gargle

6

I
I
I
I to scale the raw data values, using the same algorithms as those used by

the tape processing system. The minimimi and maximum values for each
variable specified in the table file prevent wild values from entering the data

■ stream. This windowing can mask problems with sensors, and must be used
very carefully, especially during instrument evaluation.

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Comment lines in table files are denoted with a two-part forward arrow,
consisting of a dash and a greater-than symbol. Variable identification lines
begin with a nimiber sign, an integer representing the variable position, a
colon, and the short and long version of the name of the variable. A
variable's short name is used to select the processing fimction to be used on
the data in the field defined by the entry, and should not be modified.

See Appendix II for a sample VAWR table file.

4 Processing IMET Data

The IMET system in the GLOBEC experiment transmits hourly averages
to Argos. Script argos.sh processes the IMET data, as it does for the
VAWR data, by invoking a secondary shell script which in turn calls a C
program. The shell script imet.sh calls program gargleimet, which extracts
data from the incoming file using information from a table file.

The IMET system software has the capability to handle many variables,
some of which have not been implemented in the IMET hardware at this
time. The program which decodes the input file produces an intermediate
file, which is modified by the awk script imet.awk before being archived and
used. In the awk script, the variable order is changed to more closely
resemble the order of variables in VAWR files. The final output file has a
format which is similar to the VAWR files, but has several dummy
variables, which are set to 0.

The variables in the working or archive version of the IMET files are real
yearday, wind east, wind north, dummy, dummy, short wave radiation.

relative humidity, barometric pressure, air temperature, sea temperature,
dummy, dummy, dummy, long wave radiation, battery voltage, mooring
tension, and precipitation. The units for variables which are reported by
both VAWR and IMET are described above. In addition, the IMET
battery voltage is recorded in amps, the mooring tension in pounds, and
the precipitation sensor measures cumulative precipitation in millimeters.
A sample output file is found in Appendix III.

To reprocess IMET data in case of errors, use a text editor to remove
unwanted data from file imetl.arch in the experiment subdirectory in
/gdata/argos. This file is appended by script imet.sh. After any unwanted
or erroneous data has been removed, cd to /gdata/argos and type

imet.sh argos2.dat.nn exper instrument

where nn is the number of the argos2.dat file to be reprocessed, exper is the
experiment name, and instrument is the instrument name, normally imetl
or imet2. The experiment name must correspond to two data directories,
one in /puli/data and one in /gdata/argos. The first, /puli/data/exper,
must have a subdirectory named axgos, and the second,
/gdata/argos/exper, must contain a table file with the name of the
instrument and the filename extension .tbl. Note that changes to the
working data file in the experiment directory on Puli will be overwritten by
the automated processing.

4.1 Shell Script Imet.sh

Arguments to imet.sh are the input filename, the experiment/directory, and
the instrument name. Shell script imet.sh invokes program gargleJmet with
the name of the Argos input file, the table file and the output file. The
script runs the gargle output through an awk script to compute real
yeaiday, reorder the variables and remove data with invalid dates. The awk
script also adjusts the time of the data records to the half hour by adding

8

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

30 minutes to the reported time, and normalizes air temperatures if needed.
The shell script then sorts the modified data, appends it to the archive file,
sorts the archive file and copies it to the experiment's processing
subdirectory in /puli/data.

See Appendix III for text of imet.sh and imet.awk.

4.2 Program GargleJmet

Gargle Jmet extracts the PTT numbers from the specified table file, and
retrieves records with matching PTT numbers from the Argos file. The
input records are decoded based on the length and position of each variable
specified in the IMET table file. Data is converted from ASCII hexadecimal
to floating point and written out in comma-separated ASCII strings.
Output is to a new file, and, if an existing file is specified, it will be
overwritten.

The variables output by program gargleJmet in the present implementation
are: Integer day, hour, barometric pressure, air temperature, sea
temperature, wind east, wind north, relative humidity, short wave
radiation, long wave radiation, precipitation, battery voltage, and mooring
tension. The order of these variables is modified by the shell script imet.sh,
as described above.

4.3 IMET Table Files

The IMET table files are similar to the VAWR table files used by program
gargle. Because IMET sensors return calibrated data in scientific units, the
IMET table files do not contain calibration coefficients for most variables.
They do contain information needed to decode and scale the incoming data
and to control the processing itself.

At present, each Argos IMET record contains two IMET data records. To

accommodate that double record in one pass by program gargleJmet, the
table file essentially contains two complete, identical descriptions of the
IMET record. See Appendix III for a sample of an IMET table file.

5 Processing Engineering Variables

For some experiments, a separate Argos transmitter reports mooring
tension from an independent tensiometer. Other variables, of interest for
engineering purposes, may be included in the Argos record for these
transmitters. For the Arabian Sea I experiment, variables transmitted are
tension and battery voltage.

Shell script dotens.sh in directory /puli/data/arab/argos processes the data
from the engineering Argos transmitter. This script is normally called with
the number of the argos.dat.n file to be processed. If it is called with no
arguments, it will process the most recent argos.dat.n file in directory
/gdata/argos.

Dotens.sh uses the awk script tens.awk to identify tensiometer records in
the incoming Argos file and to calculate yeax day. These fields axe written
to file tens.raw. Tension and battery voltage are ASCII hexadecimal fields,
and axe converted to decimal values and scaled in program conv. Conv
writes the working tension file, tens.asc, which contains real yeaxday, yeax,
month, day, hour, minute, second, tension, dummy, and battery voltage.

To reprocess tension data in case of errors, go to the processing directory
for the experiment, usually on Puli. If necessary, remove any incorrect data
from the database by editing file tens.raw, which is appended by this script,
then type

dotens.sh nn

where nn is the nimiber of the argos.dat file you wish to reprocess.

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

See Appendix IV for the text of dotens.sh, tens.awk, and conv.c.

6 Processing Position Data

Position data is processed by a separate script, and stored in a subdirectory
imder the usual processing directory for Argos data for each experiment.
The script that processes Arabian Sea I position data, for example, is
doposit.sh, and is found in /puli/data/arab in the argos/posit subdirectory.
Position data is generated by Service Argos and incorporated into the
incoming VAWR and IMET records.

Unlike meteorological data, position data seldom needs to be reprocessed,
as it is not liable to contain timing errors and is not subject to calibration.
However, it is often desirable to remove portions of the position record for
an experiment, such as the steaming time before a mooring deployment.
This allows plotting with auto-ranging axis limits, at an expanded scale, so
that movement of a mooring can be monitored easily.

Argos position records contain a value indicating the quality of the
calculated position, a number between one and three, with three as the
highest quality. In this processing scheme, all location records are used, but
the quality word is retained for future use. Including all position values, the
Argos positions seem to be accurate to approximately one kilometer.

To reprocess position data, use a text editor to remove unwanted values, if
necessary, from archive files in /puli/data/exper/argos. For GLOBEC,
which generates position records for both IMET and VAWR PTTs, these
files are in /puli/data/globec/argos/posit and are named vlpos.arch.asc
and ilpos.arch.asc. For the Arabian Sea deployment, which receives only
VAWR positions, the position file is pripos.arch.asc. After removing any
incorrect data, cd to /puli/data/exper/argos/posit and reprocess by typing

deposit.sh nn

11

where nn is the number of the axgos(2).dat file you wish to rerun. If this
argument is omitted, doposit will process the most recent Argos file for the
experiment related to the current working directory.

Position data is extracted from the Argos file by finding records in the file
with a line length of 13 words and piping those records to an awk script,
posit.awk. That script calculates real yearday, normalizes longitude to 180
degrees, and writes out PTT number, year, month, day, hour, minute,
second, yearday, lat, long and a quality flag. This data is written to the
temporary file junk.dat. The shell script then checks this file for the desired
PTT numbers, and if any exist, appends the position record, stripped of the
PTT number, to the appropriate archive file. This file is then sorted and
the output written over the working version of the position file. For the
Arabian Sea experiment, that file is /puli/data/arab/argos/posit/arabl.pos.

See Appendix V for the text of doposit.sh and posit.awk.

7 Data Transmission Scripts

To automatically distribute data to hosts with anonymous ftp accounts, ftp
is run from the shell script ftp.sh, invoked by argos.sh. The script uses the
-n and -i flags, which allow non-interactive use of ftp, redirecting input
commands from the text of the script itself. For sites receiving data via ftp,
we transmit the entire working version of the data every day, overwriting
the data previously sent.

For hosts without anonymous ftp sites, we use the UNIX mail utility to
distribute the data. When using mail, we send only updates to the data.
Since we want to be sure to send a full day's worth of data, we use the
UNIX utility tail to extract the last 100 records from the working version of
the data files. In the current implementation, we extract variables of
interest for our mail recipients, using an awk script, x.awk. We prepend a
header record identifying the data as ours, and a record containing the
variable names, before invoking mail.

12

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

See Appendix VI for the text of the scripts used to distribute Argos data.
Note that the hosts names and IP addresses have been changed in the
scripts reproduced there, for security purposes. These scripts can be run
manually to retransmit data if necessary.

8 Plotting Scripts

Plots of all incoming data axe generated and printed automatically on
weekday mornings. The plotting scripts, which can be different for each
experiment, are found with the processed data in the experiment
subdirectories, currently on the workstation Puli. The program Plot Plus,
written by Donald Denbo of NOAA's Pacific Marine Environmental
Laboratory, is used to create multi-panel plots of instrument data. Maps of
mooring locations are created using Matlab, a conrniercial numerical
software package.

Plots of Argos data are used to monitor both meteorology and
instrumentation, so we display the variables of meteorological interest on a
separate plot from those of engineering interest. The scripts that create
these plots are described here, see Appendix VII for examples.

8.1 Plot Plus Time Series Plots

8.1.1 Scientific Variables Plot

The command file argoss.ppc is used with program pplus to plot VAWR
Argos meteorological data. The arguments are start day, end day, and input
filename. The automated processing system invokes this script with a 3-day
time span ending on the current day provided by the UNIX date utility.

See Appendix VII.2 for the text of the script argoss.ppc and a sample
output plot.

13

8.1.2 Engineering Variables Plot

The pplus command file axgose.ppc plots the vaxiables that are of interest
primarily for engineering purposes. Some of these variables are reported by
the VAWR, some by the IMET or the tension recorder, depending on the
Argos configuration for each experiment. The arguments are identical to
the arguments for axgoss.ppc, above. See Appendix VII.3 for the text of
axgose.ppc and a sample output plot.

8.2 Matlab Position Plot

Matlab script positl.m is used to plot Argos positions. Because it is
essential to see the most recent position value, we allow the plot to
self-scale. This assures that any change in position will be very visible on
the final plot, not cropped because it is out-of-bounds.

For some experiments, a watch circle is overplotted on the positions. This
indicates the calculated limits of the mooring line, and is based on the
depth of the mooring. Care must be used when plotting watch circles,
however, since the accuracy of the Argos position information is only about
one kilometer. For deep-water moorings, like the Arabian Sea, this is
sufficient for the large watch circle of over 3 km. For a shallow mooring like
GLOBEC, with its watch circle of about 40 meters, the Argos error exceeds
the expected watch circle, so the watch circle is not plotted.

See Appendix VII.4 for the text of the Matlab position script, and sample
output plots.

14

I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

9 Appendices

Appendix I. Startup Shell Scripts

Appendix I.l. Shell Script axgos.sh

#!/biii/sh
i
« e(«)argos.sh
* /gdata/argos/argos.sh
«
« usage: sh axgos.sh
«
i 931005 n.galbraith

t
* Tests for presence of file before archiving and processing

* Incoming data is moved to argos(2).dat.n where n is

* a constantly incrementing number.

t
i also processes engineering data (tension)

* uses findlast shell script in scripts subdirectory

* normeilly invoked by cron. use crontab -1 to check.

* Be Careful Editing This MM!
* minor mod 940725 to send stdout of gargle.sh to logfile.not mail

« 940908 remove meti (the pc) from the loop
* 940930 redesign: all processing done here, plotting done last

if [-f /gdata/argos/argos.dat];

then
if [-f /gdata/argos/argos.dat.i];

■ then
lastf =' /gdata/argos/scripts/f indlast. sh " /gdata/argos/argos. dat" '

neitfs'expr llastf + 1'
I date » /gdata/argos/argos.log

echo " moving argos.dat argos.dat.$nextf"\

» /gdata/argos/argos.log

15

fi

else

mv /gdata/eo-gos/argos.dat \
/gdata/argos/argos.dat.$nextf

nextf=l
date » /gdata/argos/argos.log

echo " moving argos.dat argos.dat.1"\

» /gdata/argos/argos.log

mv /gdata/argos/argos.dat /gdata/argos/argos.dat.l

fi

process primary arabian sea I VAWR

/gdata/argos/gargle.sh gargle argos.dat.$nextf arab vawr0721\

» /gdata/argos/vawr0721.1og 2>ftl

« send primary VAWR data to navy
/puli/data/arab/argos/domail.sh 0721

process tension
/puli/data/arab/argos/dotens.sh $nextf

process position
/puli/data/arab/argos/posit/doposit.sh $nextf

process primary arabian sea II VAWR
/gdata/argos/gargle.sh geurglenew argos.dat.$nextf arab2 \

vawr0720 » /gdata/argos/vawr0720.1og 2>ftl

process arabian sea II tension

/puli/data/arab2/argos/dotens.sh $nextf

« process position
/puli/data/arab2/argos/posit/doposit.sh $nextf

* nov process the 6L0BEC data in argos2.dat

if [-f /gdata/argos/argos2.dat];

then
if [-f /gdata/argos/argos2.dat.l];

then

16

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

fi

else

fi

lastf='/gdata/argos/scripts/findlast.sh " /gdata/argos/argos2.dat'

nextf='expr $lastf + 1'
date » /gdata/argos/argos.log

echo " moving argos2.dat argos2.dat.$nextf" \

» /gdata/argos/argos.log
mv /gdata/argo8/argo82.dat \

/gdata/argos/argos2.dat.$nextf

nextf=i
date » /gdata/argos/argos.log

echo " moving argo82.dat argos2.dat.i"\

» /gdata/argos/argos.log
mv /gdata/argos/argos2.dat /gdata/argo8/argos2.dat.l

* process GLOBEC primary VAWR from file argos2.dat.n
/gdata/argos/gargle.sh garglenew argos2.dat.$nextf \

globec vawr0707 » /gdata/argos/vawrOTOT.log 2>ftl

* process GLOBEC primary IMET - includes tension
/gdata/argos/imet.sh argos2.dat.$neitf globec imetl \

» /gdata/argos/globecimetl.log 2>&1

* process GLOBEC secondary VAWR
/gdata/argos/gargle.sh garglenew argos2.dat.$nextf \

globec vawr0380 » /gdata/argos/vawr0380. log 2>a:l

« process GLOBEC secondary IMET
/gdata/argos/imet.sh argos2.dat.$nextf globec imet2 \

» /gdata/argo8/globecimet2.1og 2>ftl

t send GLOBEC data to recipients
/gdata/argos/globec/ftp.sh » /gdata/argos/globec/ftp.log 2>ftl

« process position
/puli/data/globec/argos/posit/doposit.sh $nextf

17

Appendix 1.2. Shell Script Findlast.sh

This script works with groups of files with three-part names,where the paxts
of the names are separated by periods, and the third part of the name is a
version number. It will find the file with name matching the two parts
specified in argument 1 with the highest version number on disk. Findlast
is called by axgos.sh and deposit.sh, but it can also be invoked from the
keyboard to determine the nimiber of the most recent axgos.dat or
argos2,dat file. It returns only the number of the file, not the complete
filename.

#!/bin/sh
find the files in the argument and return the number of highest

version number.
based on filenames file.ext.l file.ext.2 file.ext.n

modified 950124 to handle deleted data files by using the version
number instead of relying on creation date of file

if [$# -eq 0]
then

echo -1
exit

fi
Is $1* lawk 'BEGIN {FS="."}{print $3}' Isort +0 -n Itail -1

18

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix II. VAWR Processing

Appendix ILL Shell Script gaxgle.sh

#!/bin/sh
gargle.sh: run one of the gargle programs and process the output
usage: gargle.sh program argosfilename experiment vawrname

example: gargle.sh garglenew argos2.dat.1 globec vawr0707

941208 n. galbraith
arguments:

$1 program to run garglenew
$2 inputfile argos2.dat.1
$3 experiment globec
$4 vawmam vawr0707

cd /gdata/argos
src/$l $2 $3/$4.tbl $3/$4.raw
sort +0 -1 -u -n $3/$4.raw > $3/$4.asc
cat $3/$4.asc » $3/$4.arch

must be in /gdata/argos/src
must be in /gdata/argos
subdirectory/eperiment
table file in subdir named in $3

go to incoming data spot
run garglenew or gargle
remove incoming dupes
archive, remove duplicates and
send to processing dir

sort +0 -1 -u -n $3/$4.arch > /puli/data/$3/argos/$4.asc

Appendix II.2. Gargle output

This is a sample output file containing VAWR data as written by program
gargle. The variables axe:

seal airT TPV body! dome! Iw
degC degC mv DegK DegK w/m-2
5.552, 6.74,41.1,279.8,279.8,352.8

yearday east north speed dir sw rh bp
m/s m/s m/s deg w/m-2 '/, mb

52.229,-4.79,1.66, 5.07,25.8,-1,95.4,995.6,
52.250,-3.78,2.41, 4.48,37.5,-1,95.5,995.0, 5.559, 6.59,42.9,279.7,279.6,352.6
52.260,-3.37,2.86, 4.42,29.6,-1,95.6,994.9, 5.558, 6.57,44.4,279.7,279.8,352.9
52.281,-2.70,4.11, 4.92,13.3,-1,95.7,993.9, 5.546, 6.68.48.0,279.8,279.7,354.4

19

Appendix 11.3. VAWR Table File

-> vawr.tabl :0721 : nan : Tue Jun 28 94
#0 :v721wr instrument identifier

01356 - PROGRAM
06856 - PIT
06857 - PTT
06858 - PTT

#1 :EC east counts
16 - BITS.EC

-10.0 - MIN.EC
30.0 - MAX.EC
-99.0 - MISS.EC

#2 :NC north counts
16 - BITS.NC

-10.0 - MIN.NC
30.0 - MAX.NC

-99.0 - MISS.NC
#3 :RC rotor cotints

16 - BITS.RC
-10.0 - MIN.RC
30.0 - MAX.RC
-99.0 - MISS.RC

#4 :Ca CO counts
8 - BITS.CO

-10.0 - MIN.CO
30.0 - MAX.CO

-99.0 - MISS.CO
-.8 - MAGYAR

#5 :VA vane counts
8 - BITS.VA

-10.0 - MIN.VA
30.0 - MAX.VA

-99.0 - MISS.VA

#6 :TM time

20

5.0667 - A_RH
0.04571 - B_RH

-0.0012539 - C_RH
3.51563 - TI.RH
210.32 - P20

20. - P20FACT
#10 :BP barometric pressure

16 - BITS.BP
800.0 - MIN.BP
1100.0 - MAX.BP
-99.0 - MISS.BP

43698 - #_BP
0.0 - A_BP
0.0 - B_BP

92.68879 - C1_BP
2.672706 - C2_BP

-114.7084 - C3_BP
0.031184 - Dl.BP

27.92331E-06 - TO_BP
2.636716 - TI.BP
27.85152 - TI.BP
0.831612 - T2_BP
20.34282 - T3_BP

-4035.285 - Yl.BP
0.0 - Yl.BP

-14001.10 - Y2.BP
#11 :ST sea temperature

20 - BITS.SEA
-10.0 - MIN.SEA
40.0 - MAX.SEA
-99.0 - MISS.SEA
5005 - #.SEA

9038.16 - Rl.SEA
3998.49 - R2_SEA

-1.45 - Fl.SEA
759.14 - F2.SEA

.109376436E-02 - TA.SEA

22

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

.262474576E-03 - TB.SEA

.146244473E-06 - TC.SEA
3608.0 - RS.SEA

-> number of multiplexed temperature
-> sensors in the instrument

4.0 - K.TEMP
#12 :AT air temperature

20 - BITS.AIR

-20.0 - MIN.AIR

40.0 - MAX.AIR
-99.0 - MISS.AIR
5804 - #_AIR

12699.00 - Rl.AIR

4999.70 - R2_AIR
-131.18 - Fl.AIR
711.50 - F2_AIR

.128804283E-02 - TA.AIR

.235519671E-03 - TB.AIR

.951705804E-07 - TC.AIR
4296.0 - RS.AIR

#13 :BT body temperature
20 - BITS.B

-10.0 - MIN.B

50.0 - MAX.B
-99.0 - MISS.B

284631 - #_LWB
23460.0 - R1_B
10000.0 - R2_B

-65.50 - F1_B
712.40 - F2_B

.10125311E-02 - TA_B

.24220731E-03 - TB_B

.14217244E-06 - TC_B
4465.0 - RS.B

#14 :DT dome temperature
20 - BITS.D

-20.0 - MIN.D

23

50.0 - MAX.d
-99.0 - MISS.D

284632 - #_LWD

23460.0 - R1_D
10000.0 - R2.D
-66.56 - F1_D
711.49 - F2_D

.10161020E-02 - TA_D

.24160036E-03 - TB_D

.14344824E-06 - TC_D
4450.0 - RS_D

#15 :DU filler engineering byte
8 - BITS.DUM

#16 :CS checksum
16 - BITS.CHECKSUM

-> /* must be 1st non standard const */
30 - LST.BYT

-> /♦ must be 2nd const,0-bin 1-asc */
1 - ASCII

24

I
I
I
I
I

I

I
I
I
I
I
I
I
I
I

Appendix III. IMET Processing

Appendix III.l. Shell Script Imet.sh

I#!/bin/sh
imet.sh runs gargle.imet

usage:
imet.sh argosfilename directory/experiment instrument
where argosfilename is the raw incoming zirgos file

■ # experiment is the directory experiement i.e. globec
■ # instrument_name is normally imetl or imet2

I*
941208 n. galbraith

M cd /gdata/argos # go to incoming data spot

I src/gargle_imet $1 $2/$3.tbl $2/$3.raw
tr ',' ' ' < $2/$3.raw I awk -f imet.awk I sort +0 -1 -u -n > \

$2/$3.asc # remove incoming dupes

cat $2/$3.asc » $2/$3.arch # archive
remove dupes from whole set
and send to processing dir

sort +0 -1 -u -n $2/$3.arch > /puli/data/$2/argos/$3.asc

25

Appendix III.2. Imet.awk

BEGIN {
pday = "date +'/.j";

NUL = 0;

}
{ hour = $2 + .5;

jday = $1 + (hour / 24.);
if ($1 <= pday) {

at = $4;

if (jday < 91.) {

if (at > 25.) {
at = at - 35.96 - 5,;

}
}
priiitf("y.9.4f,y.9.4f,'/.9.4f//.2d.y.2d,y.9.4f,",jday,$6,$7,NUL,NUL,$9)
printf ("y.9.4f,y.9.4f,y.9.4f,y.9.4f,y.2d,y,2d,y.2d,",$8,$3,at, $5,NUL,NUL,NUL);
printf("y.9.4f,y.9.4f,y.9.4f ,y.3d\n",$10,$12,$13,$2)

}
else

print $1, jday, pday, tday
}
process argos imet
input variables:
day hr bp at st u v rh sw Iw rn bv tens
output variables:
realday u v null null sw rh bp at st null null null Iw bv tens hour
this version 950104 checks for clock jumping ahead of today's date
950202 added 30 minutes to time to reflect center point of record
950204 normalize very low temperatures
air temp max = 35.95 min = -5.
sea temp maix = 38.95 min = -2.

to normalize ''wrapped'' values, subract (max val + .01), add min value
i.e. at val = 33.5, actual val should be 33.5 - 35.95 - 5. = -7.4
for this experiment, use max acceptible val for at = 25

26

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix IIL3 Sample IMET File

Variables labelled d are dummy variables.

yearday u v d d sw rh bp airT seal d d d Iw bv tns pre
m/s m/s w/m"2 */. mb degc degc w/m"2 v lbs mm

53.1042,-5.00,5.30,0,0,0.0,91.0, 995.8,3.10, 5.46,0,0,0,321.0,13.,3450.,0
53.1458,-4.10,7.00,0,0,0.0,90.0, 996.0,2.95, 5.46,0,0,0,322.0,13.,3350.,9
53.1875,-3.30,8.20,0,0,0.0,91.0, 996.2,2.55, 5.53,0,0,0,320.0,13.,3300.,9
53.2292,-2.50,7.80,0,0,0.0,90.0, 996.4,2.48, 5.56,0,0,0,317.0,13.,3300.,13
53.2708,-3.30,8.00,0,0,0.0,88.0, 996.8,2.46, 5.63,0,0,0,313.0,13.,3050.,13
53.3125,-4.50,7.90,0,0,0.0,87.0, 996.8,2.35, 5.60,0,0,0,313.0,13.,3000.,0

27

1
1
1

Appendix III.4. IMET Table File

-> imet
■

_tabl :01419 : roger : Thu Dec 08 95 1
#0 :101419 instrument identifier ■ 1

01419 - PROGRAM ■
23657 - PIT
23658 - PTT ■
23659 - PTT ■

#1 :DA day of year
09 - BITS.DA 1

1.0 - MIN.DA
365.0 - MAX.DA .
-99.0 - MISS.DA 1

#2 :HR hour of day
05 - BITS.HR ■

0.0 - MIN.HR 1
23.0 - MAX.HR

-99.0 - MISS.HR ■
#3 :BP barometric pressure ■

11 - BITS.BP
900.0 - MIN.BP ■

1100.0 - MAX.BP ■
-99.0 - MISS.BP

#4 :AT air temperature ■
12 - BITS.AT

-5.0 - MIN.AT .
35.0 - MAX.AT |

-99.0 - MISS.AT
0.01 - SCALE.AT ■

500.0 - BIAS.AT |
#5 :WT sea temperature

12 - BITS.WT ■
-2.0 - MIN.WT I
38.0 - MAX.WT

-99.0 - MISS.WT ■
0.01 - SCALE.WT ■

28 1

200.0 - BIAS.WT

#6 WU Wind U
10 - BITS.WU

-51.5 - MIN.HU
51.5 - MAX.WU

-99.0 - MISS.WU
0.1 - SCALE.WU

511.0 - BIAS.WU

#7 :WV Wind V
10 - BITS.WV

-51.5 - MIN.WV
51.5 - MAX.WV

-99.0 - MISS.WV

0.1 - SCALE.WV
511.0 - BIAS.WV

#8 :RH relative humidity
7 - BITS.RH

0.0 - MIN.RH

100.0 - MAX_RH
-99.0 - MISS.RH

#9 :SW short wave radiation
11 - BITS.SW

0.0 - MIN.SW

1500.0 - MAX.SW
-99.0 - MISS.SW

#10 :LW long wave radiation
10 - BITS.LW

0.0 - MIN.LW

750.0 - MAX.LW
-99.0 - MISS.LW

#11 :RN precipitation
7 - BITS.RN

0.0 - MIN_RN
127.0 - HAX.RN

-99.0 - MISS.RN

#12 :BV battery voltage
8 - BITS.BV

29

-20.0 - MIN.BV
15.0 - MAX.BV

-99.0 - MISS.BV
0.1 - SCALE.BV

#13 :TN tension
8 - BITS.TN

-20.0 - MIN.TN

12750.0 - MAX.TN
-99.0 - MISS.TN
50.0 - SCALE.TN

-> NOTE: the cycle repeats, identical values

#14 :D2 day of year
09 - BITS.DA

1.0 - MIN.DA
365.0 - MAX.DA
-99.0 - MISS.DA

#15 :H2 hour of day
05 - BITS.HR

0.0 - MIN.HR
23.0 - MAX.HR

-99.0 - MISS.HR
#16 :B2 barometric pressure

11 - BITS.BP
900.0 - MIN.BP
1100.0 - MAX_BP
-99.0 - MISS.BP

#17 :A2 air temperature
12 - BITS.AT

-5.0 - MIN.AT
35.0 - MAX.AT

-99.0 - MISS.AT

0.01 - SCALE.AT
500.0 - BIAS.AT

#18 :W2 sea temperature
12 - BITS.HT

-2.0 - MIN.WT
38.0 - MAX.WT

30

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

-99.0 - MISS.WT

0.01 - SCALE.WT

200.0 - BIAS.WT

#19 :U2 Wind U
10 - BITS.WU

-51.1 - MIN.WU
51.1 - MAX.WU

-99.0 - MISS.WU

0.1 - SCALE_WU

511.0 - BIAS.WU

#20 :V2 Wind V
10 - BITS.WV

-51.1 - MIN.WV

51.1 - MAX.WV
-99.0 - MISS.WV

0.1 - SCALE.WV
511.0 - BIAS.WV

#21 :R2 relative humidity
7 - BITS.RH

0.0 - MIN.RH

100.0 - MAX.RH
-99.0 - MISS.RH

#22 :S2 short wave radiation
11 - BITS.SW

0.0 - MIN.SW
1500.0 - MAX.SW
-99.0 - MISS.SW

#23 :L2 long wave radiation
10 - BITS.LW

0.0 - MIN.LW

750.0 - MAX.LW

-99.0 - MISS.LW

#24 :P2 precipitation
7 - BITS.RN

0.0 - MIN.RN
127.0 - MAX.RN
-99.0 - MISS.RN

31

#25 :C2 battery voltage
8 - BITS.BV

-20.0 - MIN.BV
15.0 - MAX.BV

-99.0 - MISS.BV
0.1 - SCALE.BV

#26 :T2 tension

8 - BITS.TN

-20.0 - MIN.TN

12750.0 - MAX.TN
-99.0 - MISS.TN
50.0 - SCALE.TN

#27 :CS checksum
16 - BITS.CHECKSUM

-> /* must be 1st non standard constant */
30 - LST.BYT

-> /♦ must be 2nd constant 0-bin 1-asc */
1 - ASCII

32

I
I
I
I
I
I

I
I
I
I
I
I
I
I

Appendix IV. Engineering PTT Processing

Appendix IV. 1. Shell Script dotens.sh

#!/bin/sh
process tension, and battery voltage for arabian sea

the engineering ptt is # 22527.

1# Data characters are
AA BB CC DD EE FF GG HH

where:
I # BB = battery voltage
" # CC = tension

I*
Tension:
» T = (CCd/256) * 5.0 * 2067.9 - 423.0

I# where:
AAd is the decimal equivalent of AA hex.

I# Battery voltage:

BV = (dBB/256) * 17.1

sample input Argos records:
01356 22527 3 32 H 1 1994-06-01 10:45:24 41.533 289.356 0.0 401649554

1994-06-01 10:49:10 4 E3 C6 18 99

00 00 00 FF
01356 22527 5 32 D 2 1994-06-01 11:09:54 41.528 289.356 0.0 401649554

1994-06-01 11:06:08 2 E3 C6 18 99

00 00 00 FF
1994-06-01 11:15:33 3 E3 C5 18 99

00 00 00 FF

output file tens.asc:
Doy, Yy, Mo,Da,Hr,Mn, Sc, Tens, Dummy, Batt Volt
155.959625, 1994, 6, 4, 23, 1, 52, 425.162109, 000, 13.158984

33

to remove data from the database, edit file tens.raw, which is

appended by this script
if an argument is used, it is the number of the file to process
if called with no arguments, process most recent file
if [$# -eq 1]
then

lastf=$l
elif C -f /gdata/argos/argos.dat.1]

then
lastf='/gdata/argos/scripts/findlast.sh ''argos.dat.*'' '

else
lastf=l

fi

if [! -f /puli/data/arab/argos/tens.raw]

then
touch /puli/data/arab/argos/tens.raw

fi

extract tens data from the Argos file and append
to the raw tens file
tr ':\-' ' '< /gdata/argos/argos.dat.$lastf I awk -f \

/puli/data/arab/argos/tens.awk » /puli/data/arab/argos/tens.raw

sort +0 -n -u < /puli/data/arab/argos/tens.raw I \
/puli/data/axab/argos/conv > /puli/data/arab/axgos/tens.asc

chmod 777 /puli/data/arab/argos/tens.raw
chmod 777 /puli/data/axab/airgos/tens.asc

34

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix IV.2. Awk Script tens.awk

BEGIN {start=0}
$2 - /22527/ {start=l}
$1 - /1356/ { if ($2 !"- 722527/) {start = 0}}
$2 r 722527/ { if (start)

{ if (NF == 11) {
year = $1;

month = $2;
day = $3;
hour = $4;
minute = $5;
second = $6;
jhour = hour/24 + minute/24/60 + second/24/60/60;
doy = day;
if (month ==1)

{doy = day }
if (month ==2)

{doy = 31 + day }
if (month ==3)

{doy = 59 + day }
if (month == 4)

{doy = 90 + day }
if (month ==5)

{doy = 120 + day }
if (month ==6)

{doy = 151 + day }
if (month ==7)

{doy = 181 + day }
if (month == 8)

{doy = 212 + day }
if (month ==9)

{doy = 243 + day }
if (month ==10)
{doy = 273 + day }

if (month ==11)

35

{doy = 304 + day }
if (month ==12)

{doy = 334 + day }
doy = doy + jhour;

printf ("'/.f y.d u y.d '/.d 7,d y.d y.s y.s y.s\n",
doy,$1,$2,$3,$4,$5,$6,$9,$10,$11)}

}
}

36

I
I
I
I
I
I
I

I

I
I
I
I
I
I

Appendix IV.3. Program Conv.c

This program is used by the shell script dotens.sh to decode the ASCII
hexadecimal values in the tensiometer PTT record.

#include <stdio.h>
#include <string.h>

main ()

■ int ii, inb.outb, stat;
int yy,mo,da,hr,mn,sc,tn,tt,bat;
float BV.T.doy;
while(1)

■C
|stat=scanf('"/.f U U U U U U U U U",

&doy,&yy,&mo,&da,&hr,&nm,&sc,&bat,&tn,&tt);
if(stat == EOF)

exit(O);
T = (tn/256.) * 5.0 * 2067.9 - 423.0;
if (T < 0.5) T = 0;
BV = (bat/256.) * 17.1 ;

I
I

printf("'/.f, '/.d, y.d, U, U, U, U, '/.f, '/.d, y.f\n"
M doy,yy,mo,da,hr,iiui,sc,T,tt,BV);
■ }

}

37

Appendix V. Position Processing Scripts

Appendix V.l. doposit.sh

#! /bin/sh

process Argos position data for Arabian Sea experiment

94/03/02 N. Galbraith

usage:
doposit.sh (with no argiunents)
processes most recent file in /gdata/argos/argos.dat.n

deposit.sh nn
processes file /gdata/argos/argos.dat.nn
argos.dat:
01356 06856 33 32 D 1 1994-05-20 12:06:37 \
41.535 289.353 0.002 401650137

cd /puli/data/arab/axgos/posit

find the input file. If not specified on command line,
process the newest argos.dat.n file
if [$# -eq 1]
then

lastf=$l
elif [-f /gdata/argos/argos.dat.1]
then

lastf='/gdata/argos/scripts/findlast ''argos.dat'' '
else

lastf=l
fi

extract position info from Argos file
tr ':\-' ' ' < /gdata/argos/argos.dat.$lastf |\

awk 'NF > 13 {print $0}'I awk -f posit.awk > junk.dat

if [! -f pripos.arch.asc]

38

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I

then
touch pripos.arch.asc

fi

np='awk '$1 == 6856' junk.dat |wc -1'

if [$np -ge 1]

then
echo processing primary position reporter
awk '$1 == 6856 { print $2, $3, $4, $5, $6, $7, $8, $9, $10 }'\

■ junk.dat » pripos.arch.asc
cat pripos.arch.asc I sort -n +6 -u > arabl.pos

fi

np='awk '$1 " 6859' junk.dat |wc -1'

if [$np -ge 1]
then

echo processing spare position reporter
awk '$1 == 6859 { print $2, $3, $4, $5, $6, $7, $8, $9, $10 }' \

junk.dat » secpos.arch.asc
cat secpos.arch.asc I sort -n +6 -u > arab2.pos

fi

39

Appendix V.2. posit.awk

{ year = $7;
if (year > 1900) {year = year- 1900 }

month = $8; *

day = $9;

hour = $10;

minute = $11;

second = $12; m
jhour = hour/24 + minute/24/60 + second/24/60/60; | I

doy = day;

if (month == 2) {doy = 31 + day }

if (month == 3) {doy = 59 + day }

if (month == 4) {doy = 90 + day }

if (month == 5) {doy = 120 + day }
if (month ==6) {doy = 151 + day }

if (month == 7) {doy = 181 + day }
if (month == 8) {doy = 212 + day }
if (month == 9) {doy = 243 + day }

if (month == 10) {doy = 273 + day }
if (month == 11) {doy = 304 + day }
if (month == 12) {doy = 334 + day }
doy = doy + jhour;
long = $14;
if (long > 180)

{long = $14 - 360 } m
printf("y,d •/.2d y.2d •/.2d •/.2d •/.2d •/.2d '/J.31 '/.S.Sf y.8.3f\n", ■ ■

$2,year ,month,day,hour,minute,second ,doy,$13,long)}{}

i

40

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Appendix VI. Data Distribution Scripts

Appendix VI. 1. Ftp Shell Script

#!/bin/sh
sends 4 files to anonymous ftp site
note: names and addresses have been changed for publication

«

ftp -n -i 128.128.99.99 « EOF
user anonymous mynameCmyhost.myorganization.mydomain
cd incoming/globec.bumin
ascii
put /puli/data/globec/argos/vawr0707.asc vawr0707.asc
put /puli/data/globec/argos/vawr0380.asc vawr0380.asc
put /puli/data/globec/argos/imetl.asc imetl.asc
put /puli/data/globec/argos/imet2.asc imet2.asc

bye
EOF

41

VI.2. Mail Shell Script

#!/bin/sh
usage domail.sh xxxx where xxxx is 4-dgit VAWR number

941114 nrg - for Arabian Sea I

input: file vawrxxxx.asc
output: file nxxxx.asc

cd /puli/data/arab/argos

write the header to output file
echo " WHOI Arabian Sea Met Data - Robert A. Weller" > n$l.asc
echo " day-time wspd wdir sr rh bp sst at Ir "\

» n$l.asc

write the last 100 points to the output file
tail -100 vawr$l.asc I tr ',' ' Mawk -f x.awk » n$l.asc

send the file somewhere here. Use rep or mail
mail -s "WHOI Arabian Sea Met Data" userlCcompl.navy.mil < n$l.asc

Appendix VI.3. x.awk

This one-line script extracts data vaxiables of interest to be transmitted to
remote sites.

{ printf("y.l0.6f •/.5.2f 7,7.2f '/Ad 7A. If '/.S.lf 7,5.2f 7,5.2i '/.5.1f\n",
$1,$4,$5,$6,$7,$8,$9,$10,$14)}

42

I
I
I
I
I
I
I
I

I
I

I

I
I
I
I
I

Appendix VII. Plotting Scripts and Sample Plots

Appendix VII. 1. Shell Script dopl.sh

Shell script dopl.sh plots VAWR and mooring information.

#!/bin/sh
940930 N. Galbraith
plot Argos data for arabian sea deployment 1
VAWR science variables
VAWR engineering & other engineering variables
position, using posit/positl.m
«

I# set up to run pplus
LD_LIBRARY_PATH=/usr/openwin/lib # environment
export LD.LIBRARY.PATH
cd /puli/data/arab/argos

ed='date "+7,y" * date limits
sd='expr $ed - 3'

if C -f ppl.metaOOl] # housekeeping
I then

rm ppl.meta*
fi

do it
plot the science and engineering variables for primary VAWR
/usr/local/bin/pplus argoss.ppc $sd $ed vawr0721.asc

■ /usr/local/bin/pplus argose.ppc $sd $ed vawr0721.asc

chmod 666 ppl.metaOOl
chmod 666 ppl.meta002

plot the positions with Matlab script positl.m
which creates plot file pposit.ps

43

cd /puli/data/arab/argos/posit
/usr/local/bin/matlab <positl.m

chmod 666 pposit.ps

send the plotfiles to the printer
cd /puli/data/arab/argos
/usr/local/bin/in2ps -R ppl.metaOOl I Ipr

if [-f ppl.meta002]

then
/usr/local/bin/m2ps -R ppl.meta002 I Ipr

fi

cd /puli/data/arab/ELTgos/posit

Ipr pposit.ps

44

I
I
I
I
I
I
I
|pltype,0

azset,0,l,l,0

I
I
I
I
I
I
I
I
I
I
I

VII.2. Pplus Plotting Scripts

VII.2.1. Plot Scientific Variables: argoss.ppc

c pplus plotting script argoss.ppc
c
c usage:
c pplus argos.ppc styrday enyrday file
c note plot type hard wired to 0 for file output

rotate on
window on

multplt 1,8

5.75
0.7,0.7,0.7,0.7,0.7,0.7,0.7,0.7

1.5
0.2,0.2,0.2,0.2,0.2,0.2,0.2,1.5

line 1,,0
c set up the year day for the xaxis
xaxis 'pl','p2',.25

axlabp 0,-1

yajcis,-10,10,5,
format free
vars 1,1,2
skp,2,'p3'
rd

ylab east
plot,

yaxis,-10,10,5
format free

45

vars 1,1,, 2
skp,2,'p3'

rd
ylab north
plot,

yaxis,10,40,10

format free

vars 1,1,,,,,,,,2
skp, 2,' p3'

rd
ylab wt
plot,

yaxis,10,40,10
format free
vars l,l,,,,,,,,,z
skp,2,'p3'
rd
ylab at
plot,

yaxis,-50,1200,200

yfor (14)
format free
vars 1,1,,,,,2
skp, 2,' p3'
rd
ylab sw
plot,

yaxis,0,600,200

yfor (13)
format free

vars 1,1,,,,,,,,,,,,,'^
skp, 2,' p3'
rd

46

I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I

ylab Iw

plot,

yaxis,1000,1040,10,

yfor (14)
format free

vars 1,1,,,,,,,2

skp,2,'p3'

rd
I ylab,bp
• plot,

I azlabp -1,-1
yaxis,0,100,20

yfor (13)
format free
vars 1,1,,,,,,2

skp,2,'p3'

rd
ylab,rli
plot,Arabian Sea Argos 'p3'

47

VIL2.2. Scientific Variables Plot

10.0 -n

_g- 1020 -

20.00 21.00 21.50 22.00 22.50 23.00

Arabian Sea Argos vawr0721.asc
48

I
I
I
I

I
I
I

I
I
I
I

I
I
I
I
I

VII.2.3. Plot Engineering Variables: axgose.ppc

Ic plot VAWR Argos engineering data for Arabian Sea
c usage: pplus argos.ppc styrday enyrday file

pltype,0
axset,0,l,l,0
multplt 1,7
5.75
0.7,0.7,0.7,0.7,0.7.0.7,0.7

1.5
0.2,0.2,0.2,0.2,0.2,0.2,1.5
line 1,,0
xaxis 'pl','p2',.25

■window on
axlabp,0,-l

yajcis, 0,10,1
format free
vars 1,1,,, 2
skp,2,'p3'
rd
ylab,spd
plot.

yaxis,0,360,90
vars 1,1,,,, 2
skp,2,'p3'

Ird
ylab,dir
plot,

yaxis,-200,400,100
vars i,i,,,,,,,,>>^
skp,2,'p3'
rd
ylab.tpile

49

plot,

yaxi3,275,340,5
vars 1,1,,,,,,,,,,,2
skp,2,'p3'
rd
ylab,body

plot,

yaxis,275,340,5
vars 1,1,,,,,,,,,,,,2
skp,2,'p3'
rd

ylab,dome
plot,

yaxis,

vars 1,1,,,,,,,2
skp,2,tens.asc
rd
ylab,Tens
plot,

azlabp -1,-1
yaxis,

vars 1,1,,,,,,,,,2
skp,2,tens.asc
rd

ylab,Voltage
plot.Arabian Sea Argos 'p3'

50

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VII.2.4. Engineering Variables Plot

20.0 -1

20.00 20.50 21.00 21.50 22.00 22.50

Arabian Sea ARGOS vawr0721.asc

51

23.00

VIL3. Matlab Position Plotting Argos position values are plotted using
Matlab noninteractively with script positl.m.

VII.3.1 Matlab Script

'/, plot a position-only Argos file

•/, 941006 n.galbraith - for Arabian Sea

load arabl.pos -ascii

plot(arabl(:,9),arabl(:,8))
hold on

y, get label position
minx = min(arabl(:,9)); miny = minCarabl(:,8));
maxx = max(arabl(:,9)); maxy = max(arabl(:,8));
axis C[minx-.05,maxx+.05,miny-.05,maxy+.05])
•/, get and annotate end date
[xi,yi] =size(arabl);

txt = sprintfCfrom: '/.T.Sf to '/.T.Sf' .arabl(1,7) .arabl(xi,7)) ;
textCminx. miny. txt);

text(minx, miny-.025,'star indicates last position received');
-plot(arabl(xi,9),arabl(xi,8).'*');

*/, plot the watch circle and the anchor position
ay = 15.5; ax = 61.5;
plot(ax,ay,'x')

rady = 1.75/60; '/. 1.75 nm */. 60 nm = Idegree
radx = 1.75 / (cos(ay) ♦ 60);
xcirc = zeros(360); ycirc = zeros(360);
for ii=l:360

xcirc(ii)=radx*(cos(ii))+ax;
ycirc(ii)=rady*(sin(ii))+ay;

end

plot(xcirc,ycirc,'.')
title('ARABIAN SEA I Buoy Position');
print pposit.ps

52

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

VII.3.1 Position Plot

ARABIAN SEA I Buoy Positions

15.56

15.54

15.52

15.5

15.48

15.46

15.44

T r T r -1 1 1 r

from: 1.087 to 90.075

star indicates last position received

J L J I I L J L

61.4 61.42 61.44 61.46 61.48 61.5 61.52 61.54 61.56 61.58

53

Acknowledgements

The author wishes to thank members of the Upper Ocean Processes Group
for discussions and feedback during the development of the software.
Discussions with N. Brink and A. Plueddemann during the preparation of
this document are gratefully acknowledged.

54

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

DOCUMENT LIBRARY
Distribution List for Technical Report Exchange - May 1995

University of California, San Diego
SIO Library 0175C
9500 Oilman Drive
Lajolla, CA 92093-0175

Hancock Library of Biology & Oceanography
Alan Hancock Laboratory
University of Southern California
University Park
Los Angeles, CA 90089-0371

Gifts & Exchanges
Library
Bedford Institute of Oceanography
P.O. Box 1006
Dartmouth, NS, B2Y 4A2, CANADA

Commander
International Ice Patrol
1082 Shennecossett Road
Groton, CT 06340-6095

NOAA/EDIS Miami Library Center
4301 Rickenbacker Causeway
Miami, FL 33149

Research Library
U.S. Army Corps of Engineers
Waterways Experiment Station
3909 Halls Ferry Road
Vicksburg, MS 39180-6199

Institute of Geophysics
University of Hawaii
Library Room 252
2525 Correa Road
Honolulu, HI 96822

Marine Resources Information Center
Building E38-320
MIT
Cambridge, MA 02139

Library
Lamont-Doherty Geological Observatory
Columbia University
Palisades, NY zl0964

Library
Serials Department
Oregon State University
Corvallis, OR 97331

Pell Marine Science Library
University of Rhode Island
Narragansett Bay Campus
Narragansett, RI 02882

Working Collection
Texas A&cM University
Dept. of Oceanography
College Station, TX 77843

Fisheries-Oceanography Library
151 Oceanography Teaching Bldg.
University of Washington
Seattle, WA 98195

Library
R.S.M.A.S.
University of Miami
4600 Rickenbacker Causeway
Miami, FL 33149

Maury Oceanographic Library
Naval Oceanographic Office
Building 1003 South
1002 Balch Blvd.
Stennis Space Center, MS, 39522-5001

Library
Institute of Ocean Sciences
P.O. Box 6000
Sidney, B.C. V8L 4B2
CANADA

Library
Institute of Oceanographic Sciences
Deacon Laboratory
Wormley, Godalming
Surrey GU8 SUB
UNITED KINGDOM

The Librarian
CSIRO Marine Laboratories
G.P.O. Box 1538
Hobart, Tasmania
AUSTRALIA 7001

Library
Proudman Oceanographic Laboratory
Bidston Observatory
Birkenhead
Merseyside L43 7 RA
UNITED KINGDOM

IFREMER
Centre de Brest
Service Documentation - Publications
BP 70 29280 PLOUZANE
FRANCE

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

50272-101

REPORT DOCUMENTATION
PAGE

1. REPORT NO.
WHOI-95-06 UOP-95-03

3. Recipient's Accession No.

4. Title and Subtitle
A Processing System for Argos Meteorological Data

5. Report Date
March 1995

7. Author(s) Nancy R. Galbraith 8. Performing Organization RepL No.
WHOI-95-06

9. Performing Organization Name and Address

Woods Hole Oceanographic Institution
Woods Hole, Massachusetts 02543

10. Projectn'ask/Work Unit No.

11. Contract(C) orGrant(G) No.

(C) N00014-94-1-0161

(C3)

12. Sponsoring Organization Name and Address

Office of Naval Research

13. Type of Report & Period Covered

Technical Report

14.

15. Supplementary Notes

This report should be cited as: Woods Hole Oceanog. Inst. Tech. Rept., WHOI-95-06.

16. Abstract (Limit: 200 words)

Upper Ocean Processes Group meteorological data is transmitted from surface buoys via Argos satellite and processed in an
automatic mode on a UNIX workstation. Data is extracted from input files based on instrument type and experiment,
processed as appropriate, and plotted, without user intervention. While the processing system normally runs automatically,
it is designed so that modules can also be run directly from a terminal when necessary. The Argos processing system allows
us to monitor the meteorological data being collected in the field, and provides early information about problems with
sensors, instruments, or buoys, when they occur. The automatic process allows more information to be viewed with less
effort, and increases the usefulness of the Argos data.

17. Document Analysis a. Descriptors
automatic processing
time-series data
UNIX software

b. Identifiers/Open-Ended Terms

c. COSATI Field/Group

18. Availability Statement

Approved for public release; distribution unlimited.

19. Security Class (This Report)

UNCLASSIFIED
20. Security Class (This Page)

2l.No. of Pages
60

22. Price

(See ANSI-Z39.18) See Instructions on Reverse OPTIONAL FORM 272 (4-77)
(Formerly NTIS-35)
Department of Commerce

